Tetrahedron Letters 51 (2010) 5919-5921

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of 3-halo-analogues of HHQ, subsequent cross-coupling and first crystal structure of Pseudomonas quinolone signal (PQS)

Gerard P. McGlacken^{a,*}, Christina M. McSweeney^a, Timothy O'Brien^b, Simon E. Lawrence^a. Curtis J. Elcoate^a, F. Jerry Reen^c, Fergal O'Gara^c

^a Department of Chemistry and Analytical and Biological Research Facility, University College Cork, Ireland ^b School of Pharmacy, University College Cork, Ireland ^c BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland

ARTICLE INFO

Article history: Received 15 July 2010 Revised 16 August 2010 Accepted 3 September 2010 Available online 15 September 2010

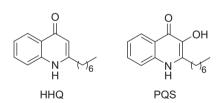
Keywords: POS HHQ Quorum signaling Ouinolone Pd-catalysis

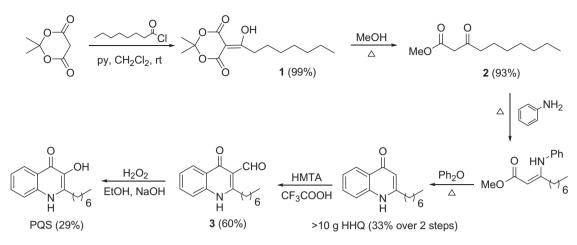
ABSTRACT

2-Aryl- and 2-alkyl-guinolin-4-ones and their N-substituted derivatives have several important biological functions such as the Pseudomonas quinolone signal (PQS) molecule participation in quorum sensing. Herein, we report the synthesis of its biological precursor, 2-heptyl-4-hydroxy-quinoline (HHQ) and possible isosteres of POS; the C-3 Cl, Br and I analogues. N-Methylation of the iodide was also feasible and the usefulness of this compound showcased in Pd-catalysed cross-coupling reactions, thus allowing access to a diverse set of biologically important molecules. The first crystal structure of PQS is also included.

© 2010 Elsevier Ltd. All rights reserved.

Quinolones are best known as broad-spectrum antibacterial agents,¹ for example, fluoroquinolone sales accounted for 18% of the antibacterial market in 2006.² An attractive feature of these molecules is their ability to kill bacteria very rapidly: an ability not widely attributable to other antibacterial agents. The related 2-aryl and 2-alkylquinolin-4-ones have recently received considerable attention due to their more wide ranging pharmacological applications. For example, 2-arylquinolin-4-one derivatives also exhibit anti-bacterial³ and anti-tumour properties.⁴ N-Substituted 2-arylquinoline derivatives can act as anti-malarial agents, immunostimulants and non-nucleoside HIV-1 inhibitors.⁵ 2-Heptyl-4-hydroxyquinoline N-oxide (HHQNO) is effective against Staphylococcus aureus.⁶ 2-Heptyl-3-hydroxy-4-quinolone,⁷ otherwise known as the Pseudomonas quinolone signal (PQS, Fig. 1), has emerged as a key regulator of bacterial cooperative behaviour known as quorum sensing in the antibiotic resistant human pathogen Pseudomonas aeruginosa.8 Derived from its biological precursor, 2-heptyl-4-quinolone (HHQ), PQS has a vast and varied array of biological functions⁹ influencing iron homeostasis,¹⁰ vesicle formation,¹¹ secondary metabolite production and biofilm formation.¹² P. aeruginosa PQS signaling is highly responsive to environmental and host-specific cues, including Mg²⁺ and the CF therapeutic colistin.¹³ Recent evidence has revealed that PQS is




Figure 1. HHQ and PQS structures.

capable of modulating immune responses and human T-cell proliferation.¹⁴

Our interest is twofold; firstly, in the synthesis of 3-haloquinolin-4-ones as analogues of PQS. These substrates will facilitate mechanistic studies into PQS signaling in virulent Pseudomonas populations with important clinical applications. Secondly, to explore if a new N-methyl version can be used in palladium cross-coupling reactions, thus providing access to an array of new biologically important quinolones. Importantly, the 2-heptyl chain is essential for certain biological functions such as the stimulation of outer vesicle formation in *P. aeruginosa*¹¹ and thus synthetic procedures on compounds bearing this bulky and hydrophobic substituent are important. There are no reports of halogenation or subsequent cross-coupling of HHQ. From a synthetic viewpoint, the presence of the long hydrophobic chain represents a challenge due to low solubility and the obvious steric hindrance.

^{*} Corresponding author. Fax: +353 021 427 4097. E-mail address: g.mcglacken@ucc.ie (G.P. McGlacken).

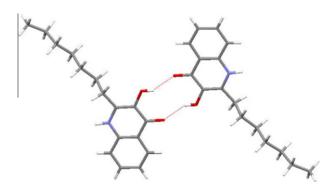
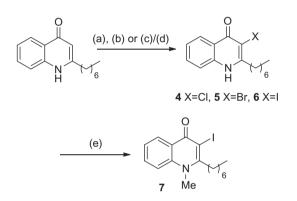
^{0040-4039/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.09.013

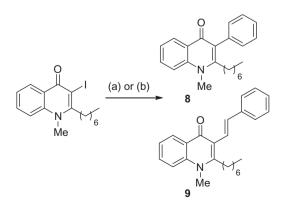
Scheme 1. Synthesis of HHQ and PQS.

Our initial goal was the synthesis of multi-gram quantities of the useful precursor HHQ and to investigate if HHQ could be halogenated at the 3-position. A modified route was designed. Initially Meldrum's acid (0.14 mol) was reacted with octanoyl chloride giving compound **1** followed by boiling in MeOH affording β -ketoester **2** in excellent yield (Scheme 1).¹⁵ Formation of the enamine by reaction with aniline using Dean–Stark apparatus occurred with >98% conversion (¹H NMR) over 16 h.¹⁶ Conrad–Limpach cyclisation occurred best using a method described by Bangdiwala and Desai.¹⁷ An alternative cyclisation method reported by Woschek et al. failed to give any product in our hands.¹⁸ As quantities of PQS were also required for biological testing, we carried out our synthesis based on conditions described by Pesci et al.⁷

The Duff formylation reaction proved problematic. In fact no isolable aldehyde could be obtained using the experimental conditions reported. We found using two equivalents of hexamine (HMTA) crucial to obtain a decent yield of aldehyde **3**. Oxidation of precursor **3** proceeded with moderate yield to give PQS as described.⁷ For the first time X-ray crystallographic data were obtained for PQS (Fig. 2).¹⁹ Interesting dimeric H-bonding indicates the potential for similar interactions in biological systems.

Chlorination of HHQ occurred smoothly using sodium dichloroisocyanurate.²⁰ Bromination also proceeded in reasonable yield with either pyridinium tribromide (PTB) or Br₂. Iodination with I₂ in basic THF afforded **6**.²¹ The anticipated low reactivity associated with the sterically demanding neighbouring alkyl chain never materialised in these reactions. Furthermore, iodide **6** could be easily methylated under standard conditions affording **7** in 67% yield (Scheme 2).²² To our delight, Pd-cross-coupling reactions could be carried out on **7**. Using Pd(PPh₃)₄ as catalyst a phenyl group could be introduced at the 3-position.²³


Figure 2. X-ray crystal structure of PQS depicting dimeric H-bonding.¹⁹

Scheme 2. Reagents and conditions: (a) $C_3CI_2N_3NaO_3$, 2 M NaOH, MeOH, H_2O , 59% (b) PTB, AcOH, 68% (c) Br_2 , 1 I_2 crystal, AcOH, 44% (d) I_2 , Na_2CO_3 , THF, 48% (e) NaH, DMF, MeI.

After heating at 130 °C for 30 min, palladium black was seen to precipitate and the reaction was stopped. The coupled product **8** was isolated in 50% yield.²⁴ An alkenyl group was also introduced using the Mizoroki–Heck reaction, iodide **7** and styrene giving alkene **9**. Two catalytic systems were tried over 16 h at 100 °C using $Pd_2(dba)_3$.dba and $Pd(PPh_3)_4$ with NMR analysis indicating conversions of ca. 15% and 30%, respectively. Using $Pd(PPh_3)_4$ at 120 °C only improved the conversion to 60% with an isolated yield of 52% (Scheme 3). No further optimisation was carried out.

In conclusion, we have described the synthesis of >10 g quantities of HHQ, its halogenation at the 3-position, subsequent

Scheme 3. Reagents and conditions: (a) PhB(OH)₂, Pd(PPh₃)₄, DMF, 2 M Na₂CO₃, 50% (b) styrene, Pd(PPh₃)₄, NMP, Et₃N, 52%.

N-methylation and finally Pd-cross coupling of 3-iodo-HHQ. The crystal structure of the prominent biological agent PQS is also described. These compounds and analogues are currently undergoing full biological evaluation, which will be reported in due course.

Acknowledgements

The authors thank Science Foundation Ireland (G.P.M., C.M.S. Grant No. 09/RFP/CHS2353, S.E.L., C.J.E. Grant No. 07/SRC/B1158 and 05/PICA/B802/EC07) for funding, Mary Ellen Buckley for earlier work on the synthesis of HHQ, J. B. Milbank for helpful discussion and Johnson-Matthey for the gift of transition metal catalysts. F.OG. thanks the European Commission (MTKD-CT-2006-042062; O36314), SFI (SFI 04/BR/B0597; 07/IN.1/B948; 08/RFP/GEN1295; 09/RFP/BMT2350), the Department of Agriculture and Food (DAF RSF 06 321: DAF RSF 06 377: FIRM 08/RDC/629). Irish Research Council for Science, Engineering and Technology (05/EDIV/ FP107), the Health Research Board (RP/2006/271; RP/2007/290; HRA/2009/146), the Environmental Protection Agency (EPA2006-PhD-S-21; EPA2008-PhD-S-2), the Marine Institute (Beaufort award) and the Higher Education Authority of Ireland (PRTLI3).

References and notes

- 1. Drlica, K.; Malik, M.; Kerns, R. B.; Zhao, X. Antimicrob. Agents Chemother. 2008, 52, 385.
- 2 Kresse, H.; Belsey, M.; Rovini, H. Nat. Rev. Drug Disc. 2007, 6, 19.
- (a) Wang, M.; Liu, Y.; Huang, Z. Tetrahedron Lett. 2001, 42, 2553; (b) Hadjeri, M.; Mariotte, A.; Boumendjel, A. Chem. Pharm. Bull. 2001, 49, 1352.
- Xia, Y.; Yang, Z.; Xia, P.; Hackl, T.; Hamel, E.; Mauger, A.; Wu, J.; Lee, K. J. J. Med. 4. Chem. 2001, 44, 3932.
- (a) Moyer, M. P.; Weber, F. H.; Gross, J. L. J. Med. Chem. 1992, 35, 4595; (b) Palacios, F.; de Retana, A. M. O.; Oyarzabal, J. Tetrahedron 1999, 55, 5947.
- Hoffman, L. R.; Déziel, E.; D'Argenio, D. A.; Lépine, F.; Emerson, J.; McNamara, 6. S.; Gibson, R. L.; Ramsey, B. W.; Miller, S. I. Proc. Natl. Acad. Sci. U.S.A. 2006, 26, 19890.
- 7. Pesci, E. C.; Milbank, J. B.; Pearson, J. P.; McKnight, S.; Kende, A. S.; Greenberg, E. P.; Iglewski, B. H. Proc. Natl. Acad. Sci. U.S.A 1999, 96, 11229.
- (a) Parsek, M. R.; Greenburg, E. P. Trends Microbiol. 2005, 13, 27; (b) Swift, S.; Downie, J. A.; Whitehead, N. A.; Barnard, A. M. L.; Salmond, G. P. C.; Williams, P. Adv. Microb. Physiol. 2001, 45, 199; (c) Williams, P.; Winzer, K.; Chan, W.; Camara, M. Philos. Trans. R. Soc. London, Ser. B 2007, 362, 1119.
- 9. Dubern, J.-F.; Diggle, S. P. Mol. Biosyst. 2008, 4, 882.
- 10 (a) Diggle, S. P.; Matthijs, S.; Wright, V. J.; Fletcher, M. F.; Chhabra, S. R.; Lamont, L. I.; Kong, X.; Hider, R. C.; Cornelis, P.; Cámara, M.; Williams, P. Chem. Biol. 2007, 14, 87; (b) Bredenenbruch, F.; Geffers, R.; Nimtz, M.; Buer, J.; Häussler, S. Environ. Microbiol. 2006, 8, 1318.
- Mashburn-Warren, L.; Howe, J.; Brandenberg, K.; Whitely, M. J. Bacteriol. 2009, 11. 191 3411
- 12. Diggle, S. P.; Winzer, K.; Chhabra, S. R.; Worrall, K. E.; Cámara, M.; Williams, P. Mol. Microbiol. 2003, 50, 29.
- 13 (a) Cummins, J.; Reen, F. J.; Baysse, C.; Mooij, M. J.; O'Gara, F. Microbiology 2009, 155, 2826; (b) Guina, T.; Purvine, S. O.; Yi, E. C.; Eng, J.; Goodlett, D. R.; Aebersold, R.; Miller, S. I. Proc. Natl. Acad. Sci. U.S.A. **2003**, 100, 2771.

- 14. (a) Kim, K.; Kim, Y. U.; Koh, B. H.; Hwang, S. S.; Kim, S.-H.; Lépine, F.; Cho, Y.-H.; Lee, G. R. Immunology 2010, 129, 578; (b) Hooi, D. S. W.; Bycroft, B. W.; Chhabra, S. R.; Williams, P.; Pritchard, D. I. Infect. Immun. 2004, 72, 6463.
- 15 Kocieński, P. J.; Pelotier, B.; Pons, J.-M.; Prideaux, H. J. Chem. Soc. 1998, 1373.
- Lokot, I. P.; Pashkovsky, F. S.; Lakhvich, F. A. Tetrahedron 1999, 55, 4783. 16. 17
- Bangdiwala, B. P.; Desai, C. M. J. Indian Chem. Soc. 1953, 30, 655.
- 18. Woschek, A.; Mahout, M.; Mereiter, K.; Hammerschmidt, F. Synthesis 2007, 1517.
- 19 Notable features include a dimeric structure with two moderate strength hydroxy-carbonyl intermolecular H-bonds with a discrete amino carbonyl Hbond capping the dimer. A second crystallographically different dimer was also observed (omitted in diagram for clarity). The data has been deposited at the CCDC 780780.
- 20. Staskun, B. J. Org. Chem. 1988, 53, 5287.
- 21. Example of halogenation: 3-Iodo-2-heptylquinolin-4(1H)-one: A mixture of HHQ (0.2 g, 0.823 mmol), iodine (0.418 g, 1.646 mmol) and Na₂CO₃ (0.131 g, 1.235 mmol) in THF (4 mL) was stirred at rt for 18 h. The mixture was quenched with Na₂S₂O₃ (0.613 g, 3 equiv) and the precipitate was collected by filtration before washing with ice-cold H2O (50 mL). Recrystallisation was carried out (EtOH) affording **6** (146 mg) in 48% yield. Mp: 241–243 °C. IR v_{max} (KBr): 3210, 3060, 2923, 2851, 2360 1628, 1578, 1555, 1497, 1473, 1435 cm⁻ ¹H NMR (400 MHz CD₃SOCD₃) δ: 0.86 (3H, t, J 8.5), 1.27-1.42 (8H, m), 1.68 (2H, m), 2.91 (2H, t, J 9.9), 7.33-7.38 (1H, m), 7.58 (1H, d, J 10.1), 7.65-7.7 (1H, m), 8.07 (1H, d, J 8.7), 12.08 (1H, br s); ¹³C NMR (400 MHz CD₃SOCD₃) δ: 13.9, 22.0, 27.9, 28.3, 28.6, 31.1, 38.7, 85.7, 117.8, 120.6, 123.8, 125.5, 131.9, 139.0, 154.6, 173.2. Exact mass calcd for C₁₆H₂₁INO (M+H)⁺, 370.0668. Found 370.0656.
- 22. N-Methylation: 2-Heptyl-3-iodo-1-methylquinolin-4(1H)-one: A stirred suspension of 6 (120 mg, 0.446 mmol) in dry DMF (3 mL) was treated with NaH (60% dispersion, 1.5 equiv) at room temperature under a nitrogen atmosphere then stirred at 40 °C for 5 h. The mixture was treated with iodomethane (1.5 equiv, 69 mg) and stirred for 12 h at 40 °C. The mixture was quenched with cold H₂O. The product was extracted with CHCl₃, washed with brine and dried (MgSO₄). The solvent was evaporated and the product was purified using column chromatography (1:1 hexane/EtOAc) affording 7 (82 mg) in 66% yield. Mp: 67-69 °C. IR v_{max} (KBr): 3374, 2926, 2854, 2361, 1617, 1592.8, 1519, 1462 cm⁻¹; ¹H NMR (400 MHz CDCl₃) δ : 0.91 (3H, t, J 6.9), 1.34 (6H, m), 1.53 (2H, m), 1.68 (2H, m), 3.22 (2H, t, / 7.9), 3.89 (3H, s), 7.36 (1H, t, J 7.1), 7.52 (1H, d, J 8.6), 7.62-7.65 (1H, m), 8.44 (1H, d, J 6.6); ¹³C NMR (400 MHz CDCl₃) δ: 14.1, 22.6, 27.6, 28.9, 29.6, 31.7, 36.7, 40.1, 90.4, 115.3, 122.6, 124.2, 127.9, 132.4, 140.9, 155.0, 173.8. Exact mass calcd for C17H23INO (M+H)+, 384.0824. Found 384.0806.
- For a similar reaction, see: Mphahele, M. J.; Nwamadi, M. S.; Mabeta, P. J. Heterocycl. Chem. 2006, 43, 255.
- 24. Example of Pd-coupling: 2-heptyl-1-methyl-3-phenylquinolin-4-one: A stirred mixture of 7 (55 mg, 0.143 mmol), phenylboronic acid (2 equiv, 35 mg) and Pd(PPh₃)₄ (5 mol %) in DMF (2.5 ml) and aqueous 2 M Na₂CO₃ (1.5 mL) was heated at 130 °C for 2 h and then cooled to room temperature. The mixture was poured into ice-cold H₂O and the precipitate was taken-up into CHCl₃, washed with brine and dried. The solvent was evaporated and the product was purified using column chromatography (1:1 hexane/EtOAc) affording 8 (24 mg) in 50% yield. Mp: 211–215 °C. IR ν_{max} (KBr): 2926, 2854, 1618, 1592, 1538, 1498 cm⁻¹; ¹H NMR (400 MHz CDCl₃) δ : 0.85 (3H, t, *J* 7.2), 1.19 (8H, m), 1.55 (2H, m), 2.63 (2H, t, J 8.2), 3.83 (3H, s), 7.20–7.45 (6H, m), 7.55 (1H, dJ, J 8.6), 7.65–7.75 (1H, m), 8.5 (1H, dd, J 1.4, 8); ¹³C NMR (400 MHz CDCl₃) δ: 14.0, 22.6, 28.5, 28.9, 29.4, 31.5, 31.8, 35.0, 115.2, 123.3, 124.3, 126.2, 127.0, 127.3, 128.4, 130.7, 132.0, 137.2, 141.6, 152.4, 176.4. Exact mass calcd for C₂₃H₂₈NO (M+H)⁺, 334.2171. Found 334.2164.